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The following research paper, which has been submitted to Icarus for
publication, summarizes the progress made on NASA Grant NAGW-2246,

"The Physics of Cometary Nuclei."

NOTE ON THE STRUCTURE OF COMET NUCLEI

Fred L. Whipple

Center for Astrophysics, Cambridge, MA

ABSTRACT

The recent developments in cometary studies suggest rather low mean densities and weak

structures for the nuclei. They appear to be accumulations of fairly discrete units loosely

bound together, as deduced from the observations of Comet Shoemaker-Levy 9 during its

encounter with Jupiter. The compressive strengths deduced from comet splitting by Opik

and Sekanina are extremely low. These values are confirmed by theory developed here.

assuming that Comet P/Holmes had a companion that collided with it in 1892. There

follows a short discussion that suggests that the mean densities of comets should increase

with comet dimensions. The place of origin of short-period comets may relate to these

properties.

Comet Densities, Impacts, Compressive Strengths, Sources and General Structure.



Introduction

The understanding of the physical structure of comet nuclei has been slow in developing.

The surprising variations in the concepts of comets since Newton's day are well documented

by Sekanina (1996a) and need not be repeated here. Estimates of the nuclear density are

relatively recent, rising from extremely low values to 1.5 gm/cm 3 (Whipple 1950) based on

.J.

the icy conglomerate model. With a solar mix of heavy elements, Opik (1966) adopted p = 2

gm/cm 3 in calculating the crushing strength, so, for several sun-grazing comets in the range

2.0 x 104 to 1.9 × 106 dyne/cm 2 on the basis of tidal forces. In that paper Opik introduced

the description of comets as "heaps of rubble" and found their crushing strengths greater

than those of "dust balls" (so --, 104 dyne/cm2).

Because of fairly frequent comet splitting, the concept of comets as heaps of rubble has

become fairly popular with astronomers and has lead to estimates of density as low as 0.2

gm/cm 3. The Giotto and Luna space missions to Halley's comet indicated a geometric albedo

of about 0.04, a bit darker than the moon, and showed that Halley's comet was elongated,

somewhat of a peanut shape. Unfortunately, the spacecraft did not approach the comet

closely enough to measure its gravitational attraction and, therefore, mass and density.

Recent Progress

The splitting of Comet Shoemaker-Levy, 9 and the influx of its 21 pieces and debris into

Jupiter's atmosphere for a week during July 1994 combined to produce considerably more



information about comet structure. From their theories of tidal disruption of the comet by

Jupiter, based on the orbit by Yeomans and Chodas (1993), Ashphaug and Benz (1994), and

Solem (1994), deduced that the original comet has a density of 0.5 gm/cm 3 with a diameter

estimated at 1.5 and 1.8 km respectively. Because the literature on the Jupiter collision is

so extensive, I shall limit further relevant references mostly to the symposium book edited

by Noll, Weaver, and Feldman (1996) and the article in it by Sekanina (1996b) on the tidal

breakup.

Ashphaug and Benz and, also, Solem assumed that the comet originally had no internal

cohesive strength and was held together solely by gravity. Their solution for an original body

of only 1.5 to 1.8 km in diameter is strongly refuted by observations of the brightnesses of

the individual pieces by the Hubble Space Telescope (HST). Weaver et al. (1993) assumed

a geometric albedo of 0.04 and from the HST observations of magnitudes deduced that the

diameter of 11 pieces ranged from 2.5 to 4.3 km. The combined spherical volume of these

pieces adds up to a diameter of ,,-7.7 km and, of course, does not include the added volume

of ablated ices, dust and smaller pieces. Thus the original diameter must have been -_ 10

km.

Sekanina concludes that the comet must have consisted of many individual bodies, a

number of them with some internal cohesive strength. This is attested to by the fact that

the brighter (larger) fragments were not elongated by Jupiter's tidal forces before they en-

tered the denser atmosphere. Weissman (1994) had pointed out that strengthless fragments

would spread out and not make great explosions in Jupiter's atmosphere. Sekanina (1996)



believesthat the original tidal breakup could be better describedphysically by the relation

by Aggarwal and Oberbeck (1974)and Dobrovolskis(1990):

_P(A)3
po Ro < 2, (1)

where p is the density of the spherical body at a distance A from the planet of density po and

radius Ro. This relation is derived by the tidal separation of the two imagined hemispheres.

The central pressure and radius of the spherical body do not enter the equation. Equation

(1) leads to p <1.1 gm/cm 3 for the progenitor of Comet Shoemaker-Levy 9 and < 0.34

gm/cm 3 for 16 P/Brooks 2. In a sense this limit might be considered also as a sort of upper

limit because it assumes sphericity for the tidally broken body, non-rotating. A low density

highly elongated body in rotation could well be more easily torn apart.

These arguments point rather uncertainly back to mean densities of an order of 0.5

gm/cm 3. Weissman (1995), for example, adopts the value 0.6 gm/cm 3. Sekanina prefers a

somewhat lower value, -,_ 0.2 gm/cm 3, while Rickman (1986) settled on p = 0.28 gm/cm3; a

value used in calculation by Greenberg et al. (1995) in determining the tensile strength of

cometary nuclei.

The Crushing Strength of the Companion of Comet 17 P/Holmes

In November 1892 Comet P/Holmes exhibited a massive flare that led to its discovery. A
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month later it had faded 7-8 magnitudes,and then, in January 1893,it flared againabout six

magnitudes. I have presented(Whipple, 1984)someevidencethat the first outburst could

have been produced by a companionsatellite that brushed the major nucleus to produce

the first flare. Then 73 days later it collided with the nucleus to produce the second. The

evidencesuggesteda rotation period of 16h.3for the nucleus, retrogradewith respect to the

orbit, and also that the secondencounterboth created an active area and also reactivated

the area of the first encounter.

Sinceits twogreat outbursts, the comet,havinga periodof 6_.9to 7_.4and orbit inclination

of 19°.2to 200.8,hasbehavedlike anaverageshort-period comet. Themagnitude of its nucleus

measuredby E. Roemer at 3 solardistancesof 2.4 to 3.2 AU, rangefrom 15.0to 15.7with a

mean of 15.3at 1 AU from Sunand Earth. This value for 1 P/Halley is about 15.0making

the current spherical radius of 17P/Holmes about 4.4 km if that of 1 P/Halley is taken as

5.0 km effectively.

The resulting encountervelocity of the companionis about equalto the velocity of escape

from the assumed spherical shape (i.e. --, 2.5m/sec) (Table 1), slightly smaller because of

its possible shape and the eccentricity of its orbit and slightly larger because of a rotating

nucleus.

To derive a crude theory, suppose a cube of side x flows into a very much larger similar

comet body at velocity Vo. Suppose the cube stops after crushing 1/n of its length, i.e. after

penetrating a distance x/n both into the cube, and into the main comet body. The collision
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lasts for an interval of time, t_,until the back of the cube stops. Thus

t_ = 2x/nvo. (2)

The momentum, pX3Vo, is applied in time t_ so that the crushing strength, so, equal to

the force/area, becomes momentum/time/area or

n.o )( 1 np' o (3)

This theory is obviously too simplistic for at least three reasons: 1) the negative acceler-

ation increases with time; 2) crushing causes the material to spread out near the main body;

and 3) the lagging portion of the satellite is not crushed.

The variation in the negative acceleration can be approximated by assuming that it varies

linearly with time (,-_ at). In this case

so that

_t 1 2-vo = - (at)dt_ = --_at , (4)

1 2

v=.o- at. (5)



The distance, D = 2x/n, becomes

jfote /fie 1 2D = -vdt- = (Vo- -_at dr), (6)

or

2X_Xn= Vote- 6at 3. (7)

But, from Eq. 4,

2?2 0

t_
(8)

Hence

2x t_(1- 1_- = _)vo (9)

or

3x

t e --

nVo
(10)
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so that

npv2o
,c- 3 (11)

The spreading effect can be included by an arbitrary spreading factor of (1-1/n), leading

finally to

1) np_v_ (12)
so=(1- n 3 "

Because tiny soft particles will not crush when impacting at low velocities, one may be

surprised that the mass of the comet satellite does not enter Eq. 12. In fact, it does enter

implicity, in the sense that Eq. 12 becomes valid only when the mass is great enough to

induce a great amount of crushing. Because the actual mass of the satellite must amount to

at least a number of tons to produce the observed activity of 17 P/Holmes, the requirement

is well satisfied.

Table I lists values of sc from Eq. 12 for various densities and assumed values of n, the

fraction of the volume that is reduced by crushing (Vo = 2.5 m/sec).



Table I
CompressiveStrength

p (gm/cm 3) n sc dyn/cm2

0.2 2 4.2 x 10 3

0.28 3 1.2 x 104

0.5 5 4.2 × 104

1.0 10 1.9 x 10 s

1.5 20 5.9 x IOs

The Table I values of sc are comparable to those calculated by Opik, which range from

2.0 × 104 to 1.9 x 106 dyn/cm 2, and the tensile strengths, T, calculated by Sekanina (1993)

for pieces of comet Shoemaker-Levy 9, from his assumption that T/p = 15000 - 20000 dyn

cm/g. Using the mean value T/p = 17,500 dyn cm/g, the range of T corresponding to the

densities in Table I becomes 3.5 x 103 to 2.6 x 104 dyn/cm 2 for Sekanina's solution of tensile

strength.

In their theoretical calculation of the tensile strength of cometary nuclei, Greenberg et

al. (1995) derive the value T = 2.7 × 103 dyn/cm 2 with their assumed value of p = 0.28

g/cm 3, somewhat less than the compressive strength of Table I.

The Mean Densities of Cometary Nuclei and General Conclusions

Following the general idea that comets first form by the accumulation of interstellar dust

and then by impacts, the mean density of the individual comet will depend primarily on its

total mass or size. The major physical factors involved are 1) gravitational compression, and

2) the velocities of impacts during accumulation. Probably lesser roles are played by induced



rotation from impacts and irregular shapesof the resulting nuclei by impacts. Possibly Pluto

represents the maximum density if p = 1.8 to 2.1 grn/cm 3. For very large comets, heating by

radioactivity will force more volatile materials out from the center (Whipple and Stefanik,

1966) but will not much affect the comet's mean density until it has aged by ablation. The

nucleus of a very large comet in its later stages may reach the maximum value of density.

By comparing Tables I and II, we see that central compression might increase the mean

density of a comet of nominal density 0.2 gm/cm 3 at a radius nearing 10 km, while for larger

nominal densities the effect of compression begins at R> 10 km.

On the other hand, if compression during impact begins at impact velocities of near 2 to

2.5 m/sec, rather small comets of radii about 5 km, would have their outer layers compressed

at mean density < 0.3 gm/cm 3, and for somewhat smaller radii at higher mean densities.

Thus it seems that most of the observable comets may have rather low mean densities

such as deduced for Comet Shoemaker-Levy 9 and low tensile and compressive strengths as

discussed earlier. All of this rests on the assumption that impact velocities are not much

greater than the velocities of escape.

A contrary point of view stems from the calculations and deductions of Farinella and

Davis (1996), who conclude that short-period comets are derived as broken pieces from en-

counters among very much larger comets (R ,,_ 200 kin) in the Kuiper belt. These secondary

comets would have surely been compressed in the breakups at impact velocities of the order

of 100 m/sec, and many would have been composed of pieces already compressed by internal
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pressures.

If, indeed,as Holman and Wisdom conclude,the short-period comets do come primarily

from the Kuiper belt, it would seem that they are fairly pristine and not pieces of huge

comets.

This study has been supported by the National Aeronautics and Space Administration.
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TABLE II

Velocity of Escapeand Central Pressure"

p(gm/cm 3
R(km)

1.0

2.0

5.0

10.0

50.0

100.0

0.2

V_ Pc

0.3 5.6 x I0

0.7 2.2 x 102

1.7 1.4 x 103

3.3 5.6 x 103

16.7 1.4 x 105

33.4 5.6 x 105

0.28

V¢¢ Pc

0.4 i.I x 102

0.8 4.4 x 102

2.0 2.7 x 103

4.0 i.i x 104

19.8 2.7 x 105

39.6 i.i x 106

0.5

V_ Pc

0.5 3.5 x 102

i.i 1.4 × 103

2.6 8.7 x 103

5.3 3.5 x 104

26.4 8.7 x 105

52.9 3.5 x lO6

1.0

V_ Pc

0.7 1.4 x 103

1.5 5.6 x 103

3.7 3.5 x 104

7.5 1.4 x 105

37.4 1.4 x 106

74.8 1.4 x 10 r

" For spheres where Voo(m/sec) is the velocity of escape and Pc(dyn/cm 2) is the central

pressure.
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